王哲龙

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Professor, Head of Lab of Intelligent System

其他任职:大连市工业无线传感器网络工程实验室主任

性别:男

毕业院校:英国杜伦大学

学位:博士

所在单位:控制科学与工程学院

学科:控制理论与控制工程. 模式识别与智能系统. 检测技术与自动化装置

办公地点:海山楼A0624
课题组网址http://lis.dlut.edu.cn/

联系方式:0411-84709010 wangzl@dlut.edu.cn

电子邮箱:wangzl@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Bayesian multi-instance multi-label learning using Gaussian process prior

点击次数:

论文类型:期刊论文

发表时间:2012-07-01

发表刊物:MACHINE LEARNING

收录刊物:SCIE、EI

卷号:88

期号:1-2,SI

页面范围:273-295

ISSN号:0885-6125

关键字:Multi-label learning; Gaussian process; Multi-instance multi-label learning; Laplace approximation

摘要:Multi-instance multi-label learning (MIML) is a newly proposed framework, in which the multi-label problems are investigated by representing each sample with multiple feature vectors named instances. In this framework, the multi-label learning task becomes to learn a many-to-many relationship, and it also offers a possibility for explaining why a concerned sample has the certain class labels. The connections between instances and labels as well as the correlations among labels are equally crucial information for MIML. However, the existing MIML algorithms can rarely exploit them simultaneously. In this paper, a new MIML algorithm is proposed based on Gaussian process. The basic idea is to suppose a latent function with Gaussian process prior in the instance space for each label and infer the predictive probability of labels by integrating over uncertainties in these functions using the Bayesian approach, so that the connection between instances and every label can be exploited by defining a likelihood function and the correlations among labels can be identified by the covariance matrix of the latent functions. Moreover, since different relationships between instances and labels can be captured by defining different likelihood functions, the algorithm may be used to deal with the problems with various multi-instance assumptions. Experimental results on several benchmark data sets show that the proposed algorithm is valid and can achieve superior performance to the existing ones.