王宝民

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 建筑材料研究所所长、土木水利国家级实验教学中心常务副主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:建设工程学院

学科:材料学. 结构工程. 市政工程

办公地点:大连理工大学3号实验楼

联系方式:0411-84707101

电子邮箱:wangbm@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Mechanical property and toughening mechanism of water reducing agents modified graphene nanoplatelets reinforced cement composites

点击次数:

论文类型:期刊论文

发表时间:2019-11-30

发表刊物:CONSTRUCTION AND BUILDING MATERIALS

收录刊物:EI、SCIE

卷号:226

页面范围:699-711

ISSN号:0950-0618

关键字:Graphene nanoplatelets; Water reducing agents; Reinforced; Cement-based composites; Mechanical property; Toughening mechanism

摘要:The unique attractive properties that make graphene nanoplatelets (GNPs) effective nano-reinforcer for cement composites. Dispersion of GNPs with dispersant is a conventional method. In order to avoid the introduction of dispersant left in cement-based materials, water reducing agent was directly used to disperse GNPs. This article investigated GNPs were dispersed using different water reduced agents, the mechanical properties and toughening mechanism of modified GNPs reinforced cement composites. In this research, GNPs were dispersed well in aqueous solution using polycarboxylate superplasticizer (PS), naphthalene superplasticizer (NS) and melamine superplasticizer (MS) as dispersants with ultrasonication. Results showed that water reducers can improve the influence of GNPs on cement-based materials and a GNPs dosage of 0.06 wt% could make the GNPs/cement composites as flowable as the plain sample. The flexural strength of cement paste increased up to 16%, 13% and 20% with 0.06 wt% PS, NS and MS modified GNPs at 28d, it increased the compressive strength of the GNPs/cement composites by 8%, 5% and 11.2%. The ratio of compressive-bend strength of decline rates of PS and NS modified GNPs/cement composites were 7.4% and 8.2% at 0.06 wt% GNPs at 28d, while the ratio of compressive-bend strength of decline rates of MS modified GNPs/cement composites were 10.9% with 0.09 wt% GNPs at 28d. It found that GNPs could accelerate hydration process of cement composite, leading to more hydration products, finer CH crystals, longer mean chain length of C-S-H gel and lower porosity, and thus the propagation of cracks of the cement composites was inhibited. (C) 2019 Elsevier Ltd. All rights reserved.