张伟
开通时间:..
最后更新时间:..
点击次数:
论文类型:期刊论文
发表时间:2015-04-01
发表刊物:FUEL CELLS
收录刊物:SCIE、EI、Scopus
卷号:15
期号:2
页面范围:344-351
ISSN号:1615-6846
关键字:Fuel Cell; Impact; Mechanical Response; Simulation; Stack
摘要:Large fuel cell stacks usually undergo dynamic load (vibration and impact) during packing, transportation, and serving time, in particular for those used in the automobiles. This may cause the decay in the performance, and even structure damage of the stack. We numerically analyze the mechanical response of a large fuel cell stack clamped by steel belts to a violent impact in the present paper. It is found that the location of the clamping belts has a great effect on the anti-impact performance of the stack. The results also indicate that the cells near the endplates have a worse anti-impact performance than those far from the endplates. When subjected to a large impact in the direction parallel with the cells, the stack may give rise to interface slippage between cells, showing a downward bowing phenomenon. The relative slippage between cells is affected by the clamping force, impact acceleration and the friction coefficient between cells. A large interface friction coefficient and a reasonable high clamping force are expected in order to increase the anti-impact performance.