个人信息Personal Information
副教授
博士生导师
硕士生导师
主要任职:Null
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理
办公地点:西部校区化工实验楼A306
联系方式:13841142437
电子邮箱:zywei@dlut.edu.cn
Relationships between Architectures and Properties of Highly Branched Polymers: The Cases of Amorphous Poly(trimethylene carbonate) and Crystalline Poly(epsilon-caprolactone)
点击次数:
论文类型:期刊论文
发表时间:2016-05-05
发表刊物:JOURNAL OF PHYSICAL CHEMISTRY B
收录刊物:EI、PubMed、SCIE、Scopus
卷号:120
期号:17
页面范围:4078-4090
ISSN号:1520-6106
摘要:Highly branched polymers (HBPs) are a special class of functional polymeric materials and possess unique properties due to their unique topological structure. A new series of highly branched linear-comb and star-comb amorphous poly(trimethylene carbonate)s (PTMC) and crystalline poly(epsilon-caprolactone)s (PCL) with well-defined structure and high molecular weight were first synthesized using hydroxylated polybutadiene (HPB) as macroinitiators by simple "one-step" and "graft from" strategies. It is expected that the impact of long-chain, highly branched architecture on the properties of amorphous and crystalline polymers, respectively, is different. We explored systematically for the first time the effect and comparison of branched architectures on the physical and chemical properties of highly branched PTMCs and PCLs, including the intrinsic viscosity, glass transition, thermal degradation, creep property, rheological property, and crystallization and melting behaviors. It is found that the intrinsic viscosities in solution for both comb-branched PTMCs and PCLs were much lower compared with their linear and star counterparts arise from more compact structure and smaller hydrodynamic volumes. For amorphous PTMC, the creep strain and rate increased remarkably with degree of branching increasing due to the shorter side chains making it difficult for the highly branched molecules to entangle. For crystalline PCL, both WARD and DSC analysis of PCLs with different topological structures indicated that the comb branched architectures have no significant influence on the crystal structure of PCL, but greatly promote the crystallization behavior, e.g., higher crystallinities. The deep understanding of structure-property relationship expects to guide the synthesis of designed functional polymer materials and the processing of polymer products.