魏志勇

个人信息Personal Information

副教授

博士生导师

硕士生导师

主要任职:Null

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:高分子材料. 高分子化学与物理

办公地点:西部校区化工实验楼A306

联系方式:13841142437

电子邮箱:zywei@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Fully biobased thermoplastic elastomers: synthesis and characterization of poly(L-lactide)-b-polymyrcene-b-poly(L-lactide) triblock copolymers

点击次数:

论文类型:期刊论文

发表时间:2016-01-01

发表刊物:RSC ADVANCES

收录刊物:SCIE、EI

卷号:6

期号:68

页面范围:63508-63514

ISSN号:2046-2069

摘要:Fully biobased poly(L-lactide)-b-polymyrcene-b-poly(L-lactide) triblock copolymers with PLLA as the hard block and polymyrcene as the soft block were synthesized by the ring opening polymerization of L-lactide in the presence of the dihydroxyl-terminated polymyrcene precursor and organocatalyst. The copolymer composition and molecular weight of these triblock copolymers were confirmed by NMR and GPC results. Two separated glass transition temperatures were detected by both DMA and DSC techniques, indicating an existence of micro-phase separation in these triblock copolymers, which is a typical characteristic of thermoplastic elastomers with the content of soft block increases. Tensile testing revealed that PLLA-b-PM-b-PLLA (200) having 20 wt% polymyrcene show distinct yielding while other samples fracture at low strain without yielding. POM results indicated that all these spherulites show the same characteristic "Maltese cross" patterns. With the increasing content of polymyrcene, the perfection of spherulites decreases, especially for PLLA-b-PM-b-PLLA (200). Considering the current energy and environmental problems, it is expected that these fully biobased thermoplastic elastomers will be of great significance in expanding the applications of PLLA and solving the ecological crisis around us.