个人信息Personal Information
副教授
博士生导师
硕士生导师
主要任职:Null
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理
办公地点:西部校区化工实验楼A306
联系方式:13841142437
电子邮箱:zywei@dlut.edu.cn
Development of X-ray opaque poly(lactic acid) end-capped by triiodobenzoic acid towards non-invasive micro-CT imaging biodegradable embolic microspheres
点击次数:
论文类型:期刊论文
发表时间:2018-11-01
发表刊物:EUROPEAN POLYMER JOURNAL
收录刊物:SCIE、Scopus
卷号:108
页面范围:337-347
ISSN号:0014-3057
关键字:Radiopaque; Poly(lactic acid) microspheres; Micro-CT imaging; Degradation behavior
摘要:Non-invasive micro-CT imaging functionalized biodegradable polymeric microspheres for interventional embolization are gaining increasing attention recent years. We herein report a facile method of end-group modification to prepare X-ray opaque poly(lactic acid) (PLA) using triiodobenzoic acid (TIBA) as end-capping agent, and develop the inherently radiopaque poly(lactic acid) materials towards embolic microspheres traceable with non-invasive micro-CT imaging. Two types, that is, linear 2-arm and star 4-arm, of TIBA terminated PLA were designed and successfully synthesized by H-1 NMR characterization. Then these PLA materials were used to fabricate polymeric microspheres with well-controlled size (100-200 mu m) by W/O emulsification method. As expected, the star 4-arm TIBA terminated poly(lactic acid) (I-S-PLA) microspheres possessed higher iodine content and exhibited greater radiopacity compared with linear 2-arm analogue (I-L-PLA). Both these micro spheres showed low cytotoxicity and controllable micro-CT imaging. Furthermore, the effects of linear and star structure of I-PLA microspheres on in vitro degradation behavior was investigated by GPC, micro-CT, SEM and EDS. The degradable results revealed that iodine content of I-L-PLA decreased faster than that of I-S-PLA, which resulted in a further attenuation in micro-CT imaging. Consequently, CT-imaging of I-S-PLA microspheres did not drop sharply over degradation period, exhibiting higher HU values than aluminum wedge of 2 mm. These findings suggested that the biodegradable radiopaque poly(lactic acid) microspheres could be traceable by non-invasive micro-CT imaging, which are promising embolic agents.