个人信息Personal Information
副教授
博士生导师
硕士生导师
主要任职:Null
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理
办公地点:西部校区化工实验楼A306
联系方式:13841142437
电子邮箱:zywei@dlut.edu.cn
A Strategy of In Situ Catalysis and Nucleation of Biocompatible Zinc Salts of Amino Acids towards Poly(l-lactide) with Enhanced Crystallization Rate
点击次数:
论文类型:期刊论文
发表时间:2019-05-01
发表刊物:POLYMERS
收录刊物:SCIE、PubMed、EI
卷号:11
期号:5
关键字:zinc salts of amino acids; poly(l-lactide); catalysis and nucleation
摘要:The intrinsic drawback of slow crystallization rate of poly(l-lactide) (PLLA) inevitably deteriorates its final properties of the molded articles. In this work, we proposed a new strategy towards poly(l-lactide) with enhanced crystallization rate by ring opening polymerization (ROP) of l-lactide (l-LA) catalyzed by biocompatible zinc salts of amino acids. For the first time we developed a one-pot facile method of zinc salts of amino acids acting dual roles of catalysis of l-LA polymerization and in situ nucleation of the as-prepared PLLA. Nine zinc salts of different amino acids, including three kinds of amino acids ligands (alanine, phenylalanine, and proline) with l/d-enantiomers and their equimolar racemic mixtures, were first prepared and tested as catalysts of l-LA polymerization. A partial racemization was observed for zinc salts of amino acids whereas no racemization was detected for the reference stannous octoate. The polymerization mechanism study showed that the interaction of zinc salts of amino acids and benzyl alcohol forms the actual initiator for l-LA polymerization. Isothermal crystallization kinetics analysis showed that the residual zinc salts of amino acids exhibited a significant nucleation effect on PLLA, evidenced by the promotion of the crystallization rate, depending on the amino acid ligand and its configuration. Meanwhile, the residual zinc salts of amino acids did not compromise the thermal stability of the pristine PLLA.