![]() |
个人信息Personal Information
副教授
博士生导师
硕士生导师
主要任职:Null
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理
办公地点:西部校区化工实验楼A306
联系方式:13841142437
电子邮箱:zywei@dlut.edu.cn
Mechanical properties and crystallization behavior of poly(butylene succinate) composites reinforced with basalt fiber
点击次数:
论文类型:期刊论文
发表时间:2015-10-01
发表刊物:JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
收录刊物:SCIE、EI、Scopus
卷号:122
期号:1
页面范围:261-270
ISSN号:1388-6150
关键字:Poly(butylene succinate); Basalt fiber; Morphology; Mechanical properties; Thermal properties
摘要:Biodegradable poly(butylene succinate) (PBS)/basalt fiber (BF) composites were prepared by melt blending method using twin-screw extruder followed by injection molding. Mechanical properties, crystallization and melting behavior, morphology, crystal structure and thermal stability of PBS/BF composites with various BF contents were investigated by different techniques. The tensile and impact properties of the composites were improved markedly with the addition of BF, due to the efficient interfacial adhesion between fibers and PBS matrix. Crystallization and melting behavior of PBS in its composites kept almost unchanged, indicating that the nucleation effect of BF was minimal and, meanwhile, it played a role in hindrance of chain motion. TG analysis showed that the thermal stability of PBS/BF composites was enhanced by the addition of BF. The crystal structure of PBS was not affected by the incorporation of BF, while the nucleation density increased gradually and the spherulite size reduced remarkably with the increase in BF. No transcrystallization phenomenon on the surface of BF was observed maybe as a result of without surface treatment.