个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:化学工艺. 能源化工. 工业催化
办公地点:大连市凌工路2号大连理工大学西部校区化工实验楼C331室
联系方式:0411-84986355
电子邮箱:wencuili@dlut.edu.cn
A highly efficient potassium-treated Au-Cu/Al2O3 catalyst for the preferential oxidation of carbon monoxide
点击次数:
论文类型:期刊论文
发表时间:2016-01-01
发表刊物:RSC ADVANCES
收录刊物:SCIE、EI
卷号:6
期号:29
页面范围:24603-24609
ISSN号:2046-2069
摘要:At the operating temperature (80-120 degrees C) of a proton exchange membrane fuel cell (PEMFC), high-efficiency elimination of CO while minimizing the H-2 consumption processes is highly desired but still remains a challenge. In the present manuscript, one novel potassium-treated Au-Cu/Al2O3 catalyst was synthesized via a two step deposition-precipitation (DP) method with excellent catalytic performance for preferential oxidation of CO (CO-PROX) in a H-2-rich stream. This catalyst exhibits 100% CO conversion over a wide temperature window of 60-110 degrees C and >= 50% selectivity of CO2 under the PEMFC operating temperature. Furthermore, the as-prepared potassium-treated Au-Cu/Al2O3 catalysts were also characterized by N-2 adsorption analysis, scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectroscopy (EDX), and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and the reasons for enhanced catalytic activity of the potassium-treated sample were elucidated. The introduction of copper could strengthen the CO adsorption on the Au-Cu/Al2O3 catalyst and potassium treatment could significantly increase the stability of active Cu+ species that contribute to enhanced catalytic performance.