李文翠

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:化学工艺. 能源化工. 工业催化

办公地点:大连市凌工路2号大连理工大学西部校区化工实验楼C331室

联系方式:0411-84986355

电子邮箱:wencuili@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Rational Design of Mesoporous Carbon Electrodes with High Mass Loading for Binder-Free Supercapacitors

点击次数:

论文类型:期刊论文

发表时间:2015-03-01

发表刊物:ENERGY TECHNOLOGY

收录刊物:SCIE、EI、Scopus

卷号:3

期号:3

页面范围:234-241

ISSN号:2194-4288

关键字:binder-free electrodes; carbonization; mesoporous carbon; nickel; supercapacitors

摘要:A three-dimensional mesoporous carbon/nickel foam hybrid material has been prepared using an insitu solution growth approach, and its energy storage as a binder-free supercapacitor electrode is explored. The nickel foam is chosen as an electrically conducting scaffold and also as a porous substrate for the growth of poly(benzoxazine-co-resol). After carbonization, tightly packed carbon layers are uniformly coated on the skeleton of the nickel foam. Such carbons show hierarchical porosity (micro-, meso-, macroporosity), a high surface area of 811m(2)g(-1), and graphitic domains. These features allow easy access, rapid diffusion, and a high loading of ions, producing a material in which ion diffusion is faster than in bulk carbon and which is highly efficient in producing an increased double-layer capacitance. The obtained electrodes exhibit an excellent capacitive behavior in KOH solutions, that is, low contact resistance, high specific capacitance (192Fg(-1)), and good rate performance. Furthermore, the three-dimensional porous substrates facilitate a high mass loading of active materials, up to 21mgcm(-2), and per-area capacitance of 1.18Fcm(-2). This synthesis strategy is scalable and potentially usable for large-scale production.