李文翠

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:化学工艺. 能源化工. 工业催化

办公地点:大连市凌工路2号大连理工大学西部校区化工实验楼C331室

联系方式:0411-84986355

电子邮箱:wencuili@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Selective Formation of Carbon-Coated, Metastable Amorphous ZnSnO3 Nanocubes Containing Mesopores for Use as High-Capacity Lithium-Ion Battery

点击次数:

论文类型:期刊论文

发表时间:2014-07-09

发表刊物:SMALL

收录刊物:SCIE、EI、PubMed、Scopus

卷号:10

期号:13

页面范围:2637-2644

ISSN号:1613-6810

关键字:amorphous structures,anodes,high capacities,lithium-ion batteries,zinc stannates

摘要:Mesoporous and amorphous ZnSnO3 nanocubes of similar to 37 nm size coated with a thin porous carbon layer have been prepared using monodisperse ZnSn(OH)(6) as the active precursor and low-temperature synthesized polydopamine as the carbon precursor. The small single nanocubes cross-link with each other to form a continuous conductive framework and interconnected porous channels with macropores of 74 nm width. Because of its multi-featured nanostructure, this material exhibits greatly enhanced integration of reversible alloying/de-alloying (i.e., transformation of Li4.4Sn and LiZn to Sn and Zn) and conversion (i.e., oxidation of Sn and Zn to ZnSnO3) reaction processes with an extremely high capacity of 1060 mA h g(-1) for up to 100 cycles. A high reversible capacity of 650 and 380 mA h g(-1) can also be delivered at rates of 2 and 3 A g(-1), respectively. This excellent electrochemical performance is attributed to the small particle size, well-developed mesoporosity, the amorphous nature of the ZnSnO3 and the continuous conductive framework produced by the interconnected carbon layers.