大连理工大学  登录  English 
王文渊
点赞:

教授   博士生导师   硕士生导师

性别: 女

毕业院校: 大连理工大学

学位: 博士

所在单位: 水利工程系

学科: 港口、海岸及近海工程

办公地点: 综合实验3#楼407室

联系方式: 0411-84707174

电子邮箱: wangwenyuan@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Transient Sloshing in Partially Filled Laterally Excited Horizontal Elliptical Vessels With T-Shaped Baffles

点击次数:

论文类型: 期刊论文

发表时间: 2021-01-29

发表刊物: JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME

卷号: 139

期号: 2

ISSN号: 0094-9930

关键字: scaled boundary finite-element method; sloshing masses; elliptical container; baffles; liquid motion

摘要: The transient sloshing in laterally excited horizontal elliptical containers with T-shaped baffles is first investigated by using a novel semi-analytical scaled boundary finiteelement method (SBFEM). The proposed method combines the advantages of the finiteelement and the boundary element methods (BEMs) with unique properties of its own, in which a new coordinate system including the circumferential local coordinate and the radial coordinate has been established. Only the boundary of the computational domain needs to be discretized in the circumferential direction as the same as the BEM and the solution in the radial direction is analytical. Assuming ideal, irrotational flow and smallamplitude free- surface elevation, the formulations (using a new variational principle formulation) and solutions of SBFEM equations for an eigenvalue problem under zero external excitation (free sloshing problem) are derived in detail. Subsequently, based on an appropriate decomposition of the container-fluid motion, and considering the eigenvalues and eigenmodes of the above eigenvalue problem, an efficient methodology is proposed for externally induced sloshing through the calculation of the corresponding sloshing masses and liquid motion. Several numerical examples are presented to demonstrate the simplicity, versatility, and applicability of the SBFEM during the simulation of sloshing problems of complex containers, and excellent agreement with the other methods is observed. Meanwhile, three T-shaped baffle configurations are considered including surface-piercing baffle, bottom-mounted baffle and their combination form, and Y-shaped configuration evolved from that of T-shaped baffle has been taken into consideration as well. The liquid fill level, arrangement and length of those baffles affecting the sloshing masses, and liquid motion are investigated in detail. The results also show that the present method can easily solve the singularity problems analytically by choosing the scaling center at the tip of the baffles and allows for the simulation of complex sloshing phenomena using far less number of degrees-of-freedom.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学