王旭坪

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean,School of Business,Dalian University of Technology

Gender:Male

Alma Mater:DALIAN UNIVERSITY OF TECHNOLOGY

Degree:Doctoral Degree

School/Department:Faculty of Management and Economics

Discipline:Management Science and Engineering

E-Mail:wxp@dlut.edu.cn


Paper Publications

An individual dependent multi-colony artificial bee colony algorithm

Hits:

Indexed by:期刊论文

Date of Publication:2019-06-01

Journal:INFORMATION SCIENCES

Included Journals:EI、SCIE

Volume:485

Page Number:114-140

ISSN No.:0020-0255

Key Words:Artificial bee colony; Individual dependent; Multi-colony; Neighbor selection; Levy flight

Abstract:Artificial bee colony (ABC) is a well-known swarm intelligence based algorithm that simulates the foraging behavior of honey bees for food sources. However, the basic ABC only evolves one colony and both the employed bee phase and onlooker phase utilize the same solution search equation, which performs well in exploration but poorly in exploitation. Inspired by the good working efficiency of labor division and the coordination of complementary elements, we propose a novel individual dependent multi-colony ABC algorithm, abbreviated as IDABC, in which the whole colony is divided into three sub-colonies, i.e., inferior sub-colony, mid sub-colony and superior sub-colony, based on the fitness function values of the individuals involved. Three evolution operators with different searching biases are introduced into the corresponding sub-colonies in order to play different roles. Furthermore, we improve the related evolution operators by incorporating the fitness and distance information of individuals and the control parameters involved in the food source perturbation that are dynamically adjusted according to the search experience. And an orthogonal learning mechanism is suggested for scout bee searching so as to generate potential solutions. The proposed IDABC is examined in a set of benchmark instances taken from the CEC2013 and CEC2014 competition, and comparative results demonstrate the competitive performance of IDABC. (C) 2019 Elsevier Inc. All rights reserved.

Pre One:Activity scheduling and resource allocation with uncertainties and learning in activities

Next One:行驶受扰延迟下配送车辆调度的干扰管理决策模型

Profile

    王旭坪,工学博士、教授、博士生导师。


    主要研究领域包括应急管理、电子商务、物流管理和应急管理等。


     主要学术与社会兼职:中国物流学会常务理事;中国物流学会特约研究员;中国软科学研究会常务理事;中国系统工程学会物流系统工程专业委员会副主任委员;中国(双法)应急管理专业委员会副主任委员;中国应急管理学会社区安全专委会副主任委员;中国运筹学会行为运筹与管理分会常务理事;中国管理科学与工程学会大数据与商务分析研究会理事;中国系统工程学会智能制造系统工程分会委员;科技部专家库入库专家;辽宁省管理科学与工程类教指委秘书长;第一批辽宁省安全生产专家;辽宁省商务厅电子商务首批入库专家;盘锦市委市政府决策咨询委员会委员。


     近些年,主持国家自然科学基金项目7 项(其中重大研究计划培育项目1项),参与科技部项目、国家自然科学基金重点项目、重大项目多项。主持省部级科研项目、副省级科研项目以及地方政府与企业委托项目多项。在国内外著名期刊Omega、International Journal of Production Research、International Journal of Production Economics、Information Sciences、Expert Systems with Applications、IEEE Internet of things Journal、管理科学学报、系统工程理论与实践、中国管理科学、管理工程学报等发表论文100余篇,申请国家发明专利5项。