王旭坪

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean,School of Business,Dalian University of Technology

Gender:Male

Alma Mater:DALIAN UNIVERSITY OF TECHNOLOGY

Degree:Doctoral Degree

School/Department:Faculty of Management and Economics

Discipline:Management Science and Engineering

E-Mail:wxp@dlut.edu.cn


Paper Publications

Developing fast predictors for large-scale time series using fuzzy granular support vector machines

Hits:

Indexed by:期刊论文

Date of Publication:2013-09-01

Journal:APPLIED SOFT COMPUTING

Included Journals:SCIE、EI

Volume:13

Issue:9

Page Number:3981-4000

ISSN No.:1568-4946

Key Words:Large-scale time series; Interval prediction; Fuzzy granular support vector machines; Performance measure

Abstract:With the widespread application of computer and communication technologies, more and more real-time systems are implemented whose large amounts of time-stamped data consequently require more efficient processing approaches. For large-scale time series, precise values are often hard or even impossible to predict in limited time at limited costs. Meanwhile, precision is not absolutely necessary for human to think and reason, so credible changing ranges of time series are satisfactory for some decision-making problems. This study aims to develop fast interval predictors for large-scale, nonlinear time series with noisy data using fuzzy granular support vector machines (FGSVMs). Six information granulation methods are proposed which can granulate large-scale time series into subseries. FGSVM predictors are developed to forecast credible changing ranges of large-scale time series. Five performance indicators are presented to measure the quality and efficiency of FGSVMs. Four time series are used to examine the effectiveness and efficiency of the proposed granulation methods and the developed FGSVMs, whose results show the effectiveness and advantages of FGSVMs for large-scale, nonlinear time series with noisy data. Crown Copyright (C) 2012 Published by Elsevier B. V. All rights reserved.

Pre One:电子商务环境下协同运输成本的影响因素研究

Next One:考虑公众心理风险感知的应急物资优化调度

Profile

    王旭坪,工学博士、教授、博士生导师。


    主要研究领域包括应急管理、电子商务、物流管理和应急管理等。


     主要学术与社会兼职:中国物流学会常务理事;中国物流学会特约研究员;中国软科学研究会常务理事;中国系统工程学会物流系统工程专业委员会副主任委员;中国(双法)应急管理专业委员会副主任委员;中国应急管理学会社区安全专委会副主任委员;中国运筹学会行为运筹与管理分会常务理事;中国管理科学与工程学会大数据与商务分析研究会理事;中国系统工程学会智能制造系统工程分会委员;科技部专家库入库专家;辽宁省管理科学与工程类教指委秘书长;第一批辽宁省安全生产专家;辽宁省商务厅电子商务首批入库专家;盘锦市委市政府决策咨询委员会委员。


     近些年,主持国家自然科学基金项目7 项(其中重大研究计划培育项目1项),参与科技部项目、国家自然科学基金重点项目、重大项目多项。主持省部级科研项目、副省级科研项目以及地方政府与企业委托项目多项。在国内外著名期刊Omega、International Journal of Production Research、International Journal of Production Economics、Information Sciences、Expert Systems with Applications、IEEE Internet of things Journal、管理科学学报、系统工程理论与实践、中国管理科学、管理工程学报等发表论文100余篇,申请国家发明专利5项。