李维仲

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:Nottingham trent University

学位:博士

所在单位:能源与动力学院

学科:制冷及低温工程. 工程热物理. 热能工程

办公地点:能动学院新大楼822室

联系方式:wzhongli@dlut.edu.cn

电子邮箱:wzhongli@dlut.edu.cn

扫描关注

论文成果

当前位置: 李维仲 >> 科学研究 >> 论文成果

NUMERICAL SIMULATION OF METHANE HYDRATE DISSOCIATION IN GLASS MICRO CHANNELS BY DEPRESSURIZATION

点击次数:

论文类型:会议论文

发表时间:2017-06-26

收录刊物:EI、CPCI-S

卷号:2

关键字:methane hydrate; CFD; dissociation; water freezing; depressurization

摘要:Methane hydrate has been paid considerable attention on how to exploit it by efficient and economical methods. A computer modeling approach was used to obtain more detail information during the process of methane hydrate decomposition. A comprehensive Users' Defined Subroutine (UDS) was used in the FLUENT code to model the methane hydrate dissociation by depressurization. The kinetic model and equilibrium condition were contained in the UDS. The new UDS can model the heat and mass transfer during the decomposition process of methane hydrate. The behavior of the methane hydrate decomposition process in both laboratory scale simulation and micro channels simulation was investigated in this paper. The laboratory-scale simulation results were compared with ones of the laboratory-scale system studied by Masuda et al. to verify the UDS. Evolutions of methane gas, water and hydrate in the cross micro channels were obtained. The phenomenon of water freezing was predicted by comparing the water temperature and freezing temperature. The results also showed that the dissociation process of gas hydrates as well as the water freezing phenomenon occur not only in the interface between hydrate layer and production zone, but also deep in the hydrate zone.