龚晓峰

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:信息与通信工程学院副院长

其他任职:电子技术教研室主任

性别:男

毕业院校:北京理工大学

学位:博士

所在单位:信息与通信工程学院

学科:通信与信息系统. 信号与信息处理

办公地点:海山楼B511

联系方式:QQ:51574683

电子邮箱:xfgong@dlut.edu.cn

扫描关注

论文成果

当前位置: 龚晓峰的个人主页 >> 科学研究 >> 论文成果

POST-ICA PHASE DE-NOISING FOR RESTING-STATE COMPLEX-VALUED FMRI DATA

点击次数:

论文类型:会议论文

发表时间:2017-03-05

收录刊物:Scopus、EI、CPCI-S

页面范围:856-860

关键字:Independent component analysis (ICA); complex-valued fMRI data; resting-state fMRI data; phase de-noising; phase range detection

摘要:Magnitude-only resting-state fMRI data have been largely investigated via independent component analysis (ICA) for exacting spatial maps (SMs) and time courses. However, the native complex-valued fMRI data have rarely been studied. Motivated by the significant improvements achieved by ICA of complex-valued task fMRI data than magnitude-only task fMRI data, we present an efficient method for de-noising SM estimates which makes full use of complex-valued resting-state fMRI data. Our two main contributions include: (1) The first application of a post-ICA phase de-noising method, originally proposed for task fMRI data, to resting-state data, which recognizes voxels within a specific phase range as desired voxels. (2) A new phase range detection strategy for a specific SM component based on correlation with its reference. We continuously change the phase range within a larger range, and compute a set of correlation coefficients between each de-noised SM and its reference. The phase range with the maximal correlation determines the final selection. The detected results by the proposed approach confirm the correctness of the post-ICA phase de-noising method in the analysis of resting-state complex-valued fMRI data.