肖武

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:化学工程

办公地点:大连理工大学西部校区化工实验楼D-405

联系方式:wuxiao@dlut.edu.cn

电子邮箱:wuxiao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Membrane separation system for coal-fired flue gas reclamation: Process planning and initial design

点击次数:

论文类型:期刊论文

发表时间:2019-03-01

发表刊物:CANADIAN JOURNAL OF CHEMICAL ENGINEERING

收录刊物:SCIE、EI

卷号:97

期号:3

页面范围:717-726

ISSN号:0008-4034

关键字:membrane separation; flue gases; multi-product; energy recovery; process planning

摘要:Membrane separation is highly expected for enriching CO2 from flue gases, but the inadequacy in separation efficiency and production capacity should not be overlooked. Process planning and initial design with multi-product and energy recovery approach is attempted in this work to ameliorate this limitation. Three retrofitting options are considered: the novel constraint mode with the local permeate CO2 concentration that is always higher than the feed stream concentration is proposed for CO2 enrichment to increase the output of the CO2-enriched product (with a general mode, the local permeate stream that is more diluted than the feed stream mixes in the permeate bulk); the turbine unit is used to take back the static energy in membrane residue; and the multi-product option with N-2 purification would have the advantage that N-2 has been enriched greatly after CO2 separation. According to the comprehensive comparison conducted in this study, the retrofitted process involving both the novel constraint mode and the multi-product approach is the most effective for saving energy and enhancing production capacity. Crude CO2 (50 vol%) and N-2 (99 vol%) would be generated simultaneously. In addition, the positive performance has been demonstrated by process simulation and economical analysis with both a normal polysulphone membrane and a novel Polaris membrane. On the whole, membrane separation system retrofitting with multi-product and energy recovery approach together should be an effectual approach to promote carbon capture, storage, and utilization.