谢晴
开通时间:..
最后更新时间:..
点击次数:
论文类型:期刊论文
发表时间:2013-01-01
发表刊物:CHEMOSPHERE
收录刊物:SCIE、EI、PubMed
卷号:90
期号:2
页面范围:188-194
ISSN号:0045-6535
关键字:Hydroxylated poly brominated diphenyl ether; Photodegradation; Photooxidation; Ionization effect; Bromination effect
摘要:Hydroxylated polybrominated diphenyl ethers (HO-PBDEs) pose potential ecological risks due to their endocrine disrupting effects and extensive sources. It is of great importance to know their environmental transformation for the purpose of ecological risk assessment. Photodegradation is an important transformation pathway of HO-PBDEs. As HO-PBDEs ionize in natural waters, the photochemical reactivities of both neutral and anionic HO-PBDEs need to be unveiled. In this study, six HO-PBDEs were selected as model compounds. Their direct photolysis rate constants (k(d)), quantum yields (Phi), light absorptions (A), second-order reaction rate constants with O-1(2) (k(1O2)) and (OH)-O-center dot (k(OH)) at different pH were determined, as well as these parameters for the neutral and anionic HO-PBDEs. The k(d), Phi, A, k(1O2) and k(OH) for the anions are much higher than those for the neutral molecules and vary with the bromination degree. Molecular parameters computed with the density functional theory (DFT) were employed to construct structure-reactivity equations. The ether bond strength, the frontier molecular orbital energy and the charge distribution were found to be the intrinsic structural characters governing the photochemical reactivities. The half-lives range from 0.7 to 60.1 h for the photodegradation including the direct photolysis and the reactions with O-1(2) and (OH)-O-center dot in surface waters at 45 degrees N latitude under the continuous solar irradiation of sunny noon on 15 July. Direct photolysis is the dominant pathway. The photochemical reactivities of other HO-PBDEs at a given pH can also be estimated based on the structure-reactivity equations, which is important for the ecological risk assessment of HO-PBDEs. (C) 2012 Elsevier Ltd. All rights reserved.