谢晴
开通时间:..
最后更新时间:..
点击次数:
论文类型:期刊论文
发表时间:2011-06-01
发表刊物:ENVIRONMENTAL SCIENCE & TECHNOLOGY
收录刊物:EI、PubMed、PKU、ISTIC、Scopus、SCIE
卷号:45
期号:11
页面范围:4839-4845
ISSN号:0013-936X
摘要:Computational approaches are crucial to risk assessment and pollution prevention of newly synthesized compounds prior to large-scale production and commercialization. Understanding the kinetics and mechanism of the tropospheric reaction of semivolatile organic compounds with center dot OH is an indispensable component of risk assessment. In this study, we show that the density functional theory (DFT) can be successfully employed to probe the kinetics and mechanism of atmospheric photooxidation of polybrominated diphenyl ethers (PBDEs) by center dot OH, taking 4,4'-dibromodiphenyl ether (BDE-15) as a case. The predicted products (HO-PBDEs, brominated phenols and Br-2) and overall rate constant (k(OH)) at 298 K are consistent with the experimental results. Two pathways leading to formation of HO-PBDEs are identified: Br substitution by center dot OH, and abstraction of H gem to center dot OH in BDE-OH adducts by O-2. This study offers a cost-effective way for probing the atmospheric indirect photooxidation kinetics and mechanism of PBDEs.