Indexed by:期刊论文
Date of Publication:2019-03-05
Journal:JOURNAL OF APPLIED POLYMER SCIENCE
Included Journals:SCIE、Scopus
Volume:136
Issue:9
ISSN No.:0021-8995
Key Words:APPJ; polyethylene; surface wettability; water mixing
Abstract:Polyethylene (PE) has many excellent material properties (low density, high flexibility, good chemical resistance, etc.), and is widely used in industrial and medical fields. However, the practical applications of PE are sometimes limited due to its poor wettability. In this article, we employ pure nitrogen atmospheric pressure plasma jet (APPJ) and N-2-H2O APPJ to hydrophilize PE surfaces. Wettability, time stability, chemical composition, micromorphology, and mechanical properties of the treated surfaces are investigated by contact angle measurement, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and electric digital display push-pull machine. The pure nitrogen APPJ can hydrophilize PE surfaces without inducing obvious microstructure changes, and relatively better wettability (water contact angle=13 degrees) could thereby be achieved. On the other hand, the N-2-H2O APPJ creates micro/nanoscale pores on the treated hydrophilic surfaces, contributing to the better time stability and lower tensile strength. The results reported here clearly demonstrate the great potential of nitrogen APPJs with different water mixing ratios in controlling surface wettability and microstructures of polymer surfaces. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47136.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Main positions:创新创业学院院长
Gender:Male
Date of Birth:1981-12-01
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:创新创业学院
Discipline:Mechanical Manufacture and Automation. Materials Surface Engineering. Plasma physics. Biomedical Engineering
Business Address:机械新大楼
Contact Information:0411-84706959
Open time:..
The Last Update Time:..