Indexed by:Journal Papers
Date of Publication:2021-01-09
Journal:COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
Volume:586
ISSN No.:0927-7757
Key Words:CFRP; Superhydrophobic; Laser direct writing; Water-repellence; Self-cleaning; Anti-icing<bold>; </bold>
Abstract:Carbon fiber reinforced polymer (CFRP) composites are widely used in various industry fields due to their high strength and stiffness. However, their intrinsic hydrophilicity makes the surface easily be wetted by water, which sometimes limits their practical applications. In this paper, we present a simple method to functionalize CFRP surface by using picosecond laser direct writing and fluoroalkylsilane immersion, through which micro/nanostructures and low surface energy are created on CFRP surface. The functionalized surface possesses static water contact angle > 150 degrees and rolling-off angle < 10 degrees, and impinged water droplet can easily rebound from the surface, showing excellent water-repellence. The non-wetting surface shows remarkable tolerance towards low/high temperature exposure, falling sand abrasion and aqueous solutions invasion. The superhydrophobicity impart CFRP surface Lotus-like self-cleaning property. Additionally, the functionalized CFRP surface shows outstanding anti-icing capacity compared with the original surface. Our results offer insights into the design of functional CFRP surface and might improve the application prospects of CFRP in some complex conditions like dusty, rainy and cold environments.<bold> </bold>
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Main positions:创新创业学院院长
Gender:Male
Date of Birth:1981-12-01
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:创新创业学院
Discipline:Mechanical Manufacture and Automation. Materials Surface Engineering. Plasma physics. Biomedical Engineering
Business Address:机械新大楼
Contact Information:0411-84706959
Open time:..
The Last Update Time:..