Indexed by:期刊论文
Date of Publication:2012-08-01
Journal:MICRO & NANO LETTERS
Included Journals:SCIE、EI、Scopus
Volume:7
Issue:8
Page Number:786-789
ISSN No.:1750-0443
Abstract:The fabrication of superhydrophobic surfaces depends on surface microstructures and surface chemistry. In this Letter, an electrochemical method was developed to fabricate superhydrophobic surfaces, micro/nanometre-scale rough structures were created via electrochemical etching and the surface energy was reduced by the modification of fluoroalkylsilane. Superhydrophobic hexagonal aluminium boats were fabricated via the proposed electrochemical method. These boats formed an array through self-assembly and showed a large loading capacity. In this array, the 'Cheerios effect' was adopted to improve the buoyant force of the floaters. The accumulation of 'Cheerios effect' can be reinforced with the increase of total face width per unit area or the contact angles. These results indicate that the micro/nanometre-scale rough structures can contribute to the buoyancy of the floaters, and the accumulation of dominant forces on very small scales can have a remarkable effect on a large scale. These findings can be used to improve the loading capacity of the large-scale floaters.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Main positions:创新创业学院院长
Gender:Male
Date of Birth:1981-12-01
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:创新创业学院
Discipline:Mechanical Manufacture and Automation. Materials Surface Engineering. Plasma physics. Biomedical Engineering
Business Address:机械新大楼
Contact Information:0411-84706959
Open time:..
The Last Update Time:..