刘新

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:创新创业学院院长

性别:男

出生日期:1981-12-01

毕业院校:大连理工大学

学位:博士

所在单位:创新创业学院

学科:机械制造及其自动化. 材料表面工程. 等离子体物理. 生物医学工程

办公地点:机械新大楼

联系方式:0411-84706959

电子邮箱:xinliu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Surface modification of tube inner wall by transferred atmospheric pressure plasma

点击次数:

论文类型:期刊论文

发表时间:2016-12-15

发表刊物:APPLIED SURFACE SCIENCE

收录刊物:SCIE、EI、Scopus

卷号:389

页面范围:967-976

ISSN号:0169-4332

关键字:Atmospheric pressure plasma; Tube; Wettability; Surface modification; Aging

摘要:Tubes are indispensable in our daily life, mechanical engineering and biomedical fields. However, the practical applications of tubes are sometimes limited by their poor wettability. Reported herein is hydrophilization of the tube inner wall by transferred atmospheric pressure plasma (TAPP). An Ar atmospheric pressure plasma jet (APPJ) is used to induce He TAPP inside polytetrafluoroethylene (PTFE) tube to perform inner wall surface modification. Optical emission spectrum (OES) is used to investigate the distribution of active species, which are known as enablers for surface modification, along the TAPP. Tubes' surface properties demonstrate that after TAPP treatment, the wettability of the tube inner wall is well improved due to the decrease of surface roughness, the removal of surface fluorine and introduction of oxygen. Notably, a deep surface modification can significantly retard the aging of the obtained hydrophilicity. The results presented here clearly demonstrate the great potential of TAPP for surface modification of the inner wall of tube or other hollow bodies, and thus a uniform, effective and long lasting surface modification of tube with any length can be easily realized by moving the tube along its axis. (C) 2016 Elsevier B.V. All rights reserved.