刘新

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:创新创业学院院长

性别:男

出生日期:1981-12-01

毕业院校:大连理工大学

学位:博士

所在单位:创新创业学院

学科:机械制造及其自动化. 材料表面工程. 等离子体物理. 生物医学工程

办公地点:机械新大楼

联系方式:0411-84706959

电子邮箱:xinliu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

点击次数:

论文类型:期刊论文

发表时间:2016-04-05

发表刊物:SCIENTIFIC REPORTS

收录刊物:SCIE、PubMed

卷号:6

页面范围:23985

ISSN号:2045-2322

摘要:Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.