![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:创新创业学院院长
性别:男
出生日期:1981-12-01
毕业院校:大连理工大学
学位:博士
所在单位:创新创业学院
学科:机械制造及其自动化. 材料表面工程. 等离子体物理. 生物医学工程
办公地点:机械新大楼
联系方式:0411-84706959
电子邮箱:xinliu@dlut.edu.cn
Preparation of Superoleophobic and Superhydrophobic Titanium Surfaces via an Environmentally Friendly Electrochemical Etching Method
点击次数:
论文类型:期刊论文
发表时间:2013-01-01
发表刊物:ACS SUSTAINABLE CHEMISTRY & ENGINEERING
收录刊物:SCIE、EI、Scopus
卷号:1
期号:1
页面范围:102-109
ISSN号:2168-0485
关键字:Superoleophobic; Superhydrophobic; Electrochemical etching; Titanium surfaces; Environmentally friendly
摘要:The preparation of superoleophobic and superhydrophobic surfaces requires surface microgeometries and surface chemistry. In this study, an economical and environmentally friendly electrochemical etching method was developed to prepare superoleophobic and superhydrophobic titanium surfaces. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), energy-dispersive spectroscopy (EDS), and optical contact angle measurements were used to characterize the surface morphologies, crystal structures, chemical compositions, and wettability of the surfaces for both water and oil. The results show that the prepared superoleophobic surface has water, glycerol, and hexadecane contact angles above 150 degrees, with rolling angles of only 1-2 degrees. Analysis of the electrolyte, the reaction process, and the products demonstrates that the proposed method is inexpensive and environmentally friendly. The effects of electrochemical parameters such as current density, electrochemical etching time, electrolyte temperature, and electrolyte concentration on the surface wettability for water, glycerol, and hexadecane were also investigated. Superoleophobicity and superhydrophobicity can be selectively obtained by varying the electrochemical parameters. The proposed method is believed to be adopted for industrial production of superoleophobic and superhydrophobic titanium surfaces.