Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
LIU Xin

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:School of Chemistry
Discipline:Physical Chemistry (including Chemical Physics). Inorganic Chemistry
Business Address:西部校区化工综合楼C307.
Contact Information:Email: xliu@dlut.edu.cn
E-Mail:xliu@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: a first-principles investigation

Hits : Praise

Indexed by:期刊论文

Date of Publication:2014-01-01

Journal:RSC ADVANCES

Included Journals:SCIE、EI、Scopus

Volume:4

Issue:73

Page Number:38750-38760

ISSN No.:2046-2069

Abstract:We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects on h-BN, which act as strong trapping sites for Cu atoms and inhibit their clustering. The strong binding of Cu atoms at boron vacancy also up-shifts the energy level of Cu-d states to the Fermi level and promotes the formation of peroxide-like intermediate. CO oxidation over Cu atoms embedded in h-BN would proceed through the Langmuir-Hinshelwood mechanism with the formation of a peroxide-like complex by reaction of coadsorbed CO and O-2, with the dissociation of which the a CO2 molecule and an adsorbed O atom are formed. Then, the embedded Cu atom is regenerated by the reaction of another gaseous CO with the remnant O atom. The calculated energy barriers for the formation and dissociation of peroxide complex and regeneration of embedded Cu atoms are as low as 0.26, 0.11 and 0.03 eV, respectively, indicating the potential high catalytic performance of Cu atoms embedded in h-BN for low temperature CO oxidation.