Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
LIU Xin

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:School of Chemistry
Discipline:Physical Chemistry (including Chemical Physics). Inorganic Chemistry
Business Address:西部校区化工综合楼C307.
Contact Information:Email: xliu@dlut.edu.cn
E-Mail:xliu@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Defective Graphene Supported MPd12 (M = Fe, Co, Ni, Cu, Zn, Pd) Nanoparticles as Potential Oxygen Reduction Electrocatalysts: A First-Principles Study

Hits : Praise

Indexed by:期刊论文

Date of Publication:2013-01-24

Journal:JOURNAL OF PHYSICAL CHEMISTRY C

Included Journals:SCIE、EI、Scopus

Volume:117

Issue:3

Page Number:1350-1357

ISSN No.:1932-7447

Abstract:We studied the electronic structure of MPd12 (M = Fe, Co, Ni, Cu, Zn, Pd) nanoparticles deposited on graphene substrates and their reactivity toward O adsorption, which are directly related to the catalytic performance of these composites in oxygen reduction reaction, by first-principles-based calculations. We found that the alloying between M and Pd can enhance the stability of nanoparticles and promote their oxygen reduction activity to be comparable with that of Pt(111). The defective graphene substrate can provide anchoring sites for these nanoparticles by forming strong metal-substrate interaction. The interfacial interaction can contribute to additional stability and further tune the averaged d-band center of the deposited alloy nanoparticles, resulting in strong interference on the O adsorption. As the O adsorption on these composites is weakened, the oxygen reduction reaction kinetics over these composites will also be promoted. These composites are thus expected to exhibit both high stability and superior catalytic performance in oxygen reduction reaction.