扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 刘新 ( 副教授 )

    的个人主页 http://faculty.dlut.edu.cn/xliu/en/index.htm

  •   副教授   博士生导师   硕士生导师
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
CO oxidation catalyzed by Pt-embedded graphene: a first-principles investigation

点击次数:
论文类型:期刊论文
发表时间:2014-11-21
发表刊物:PHYSICAL CHEMISTRY CHEMICAL PHYSICS
收录刊物:SCIE、PubMed、Scopus
卷号:16
期号:43
页面范围:23584-23593
ISSN号:1463-9076
摘要:We addressed the potential catalytic role of Pt-embedded graphene in CO oxidation by first-principles-based calculations. We showed that the combination of highly reactive Pt atoms and defects over graphene makes the Pt-embedded graphene a superior mono-dispersed atomic catalyst for CO oxidation. The binding energy of a single Pt atom onto monovacancy defects is up to -7.10 eV, which not only ensures the high stability of the embedded Pt atom, but also vigorously excludes the possibility of diffusion and aggregation of embedded Pt atoms. This strong interfacial interaction also tunes the energy level of Pt-d states for the activation of O-2, and promotes the formation and dissociation of the peroxide-like intermediate. The catalytic cycle of CO oxidation is initiated through the Langmuir-Hinshelwood mechanism, with the formation of a peroxide-like intermediate by the coadsorbed CO and O-2,by the dissociation of which the CO2 molecule and an adsorbed O atom are formed. Then, another gaseous CO will react with the remnant O atom and make the embedded Pt atom available for the subsequent reaction. The calculated energy barriers for the formation and dissociation of the peroxide-like intermediate are as low as 0.33 and 0.15 eV, respectively, while that for the regeneration of the embedded Pt atom is 0.46 eV, indicating the potential high catalytic performance of Pt-embedded graphene for low temperature CO oxidation.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学