肖现涛

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

办公地点:数学科学学院312

联系方式:0411-84708351-8312

电子邮箱:xtxiao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科研 >> 论文成果

A STOCHASTIC SEMISMOOTH NEWTON METHOD FOR NONSMOOTH NONCONVEX OPTIMIZATION

点击次数:

论文类型:期刊论文

发表时间:2019-01-01

发表刊物:SIAM JOURNAL ON OPTIMIZATION

收录刊物:EI、SCIE

卷号:29

期号:4

页面范围:2916-2948

ISSN号:1052-6234

关键字:nonsmooth stochastic optimization; stochastic approximation; semismooth Newton method; stochastic second order information; global convergence

摘要:In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian information of the smooth part of the objective function is available via calling stochastic first and second order oracles. The proposed method can be seen as a hybrid approach combining stochastic semismooth Newton steps and stochastic proximal gradient steps. Two inexact growth conditions are incorporated to monitor the convergence and the acceptance of the semismooth Newton steps and it is shown that the algorithm converges globally to stationary points in expectation and almost surely. We present numerical results and comparisons on l1-regularized logistic regression and nonconvex binary classification that demonstrate the efficiency of the algorithm.