个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
办公地点:数学科学学院312
联系方式:0411-84708351-8312
电子邮箱:xtxiao@dlut.edu.cn
A STOCHASTIC SEMISMOOTH NEWTON METHOD FOR NONSMOOTH NONCONVEX OPTIMIZATION
点击次数:
论文类型:期刊论文
发表时间:2019-01-01
发表刊物:SIAM JOURNAL ON OPTIMIZATION
收录刊物:EI、SCIE
卷号:29
期号:4
页面范围:2916-2948
ISSN号:1052-6234
关键字:nonsmooth stochastic optimization; stochastic approximation; semismooth Newton method; stochastic second order information; global convergence
摘要:In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian information of the smooth part of the objective function is available via calling stochastic first and second order oracles. The proposed method can be seen as a hybrid approach combining stochastic semismooth Newton steps and stochastic proximal gradient steps. Two inexact growth conditions are incorporated to monitor the convergence and the acceptance of the semismooth Newton steps and it is shown that the algorithm converges globally to stationary points in expectation and almost surely. We present numerical results and comparisons on l1-regularized logistic regression and nonconvex binary classification that demonstrate the efficiency of the algorithm.