肖现涛

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

办公地点:数学科学学院312

联系方式:0411-84708351-8312

电子邮箱:xtxiao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科研 >> 论文成果

Quadratic model updating with gyroscopic structure from partial eigendata

点击次数:

论文类型:期刊论文

发表时间:2013-09-01

发表刊物:OPTIMIZATION AND ENGINEERING

收录刊物:SCIE、EI、Scopus

卷号:14

期号:3

页面范围:431-455

ISSN号:1389-4420

关键字:Quadratic eigenvalue problem; Inverse problem; Model updating problem; Gyroscopic structure; Inexact smoothing Newton method

摘要:Quadratic eigenvalue model updating problem, which aims to match observed spectral information with some feasibility constraints, arises in many engineering areas. In this paper, we consider a damped gyroscopic model updating problem (GMUP) of constructing five n-by-n real matrices M,C,K,G and N, such that they are closest to the given matrices and the quadratic pencil Q(lambda):=lambda (2) M+lambda(C+G)+K+N possess the measured partial eigendata. In practice, M,C and K, represent the mass, damping and stiffness matrices, are symmetric (with M and K positive definite), G and N, represent the gyroscopic and circulatory matrices, are skew-symmetric. Under mild assumptions, we show that the Lagrangian dual problem of GMUP can be solved by a quadratically convergent inexact smoothing Newton method. Numerical examples are given to show the high efficiency of our method.