肖现涛

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

办公地点:数学科学学院312

联系方式:0411-84708351-8312

电子邮箱:xtxiao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科研 >> 论文成果

A Perturbation approach for an inverse quadratic programming problem

点击次数:

论文类型:期刊论文

发表时间:2010-12-01

发表刊物:MATHEMATICAL METHODS OF OPERATIONS RESEARCH

收录刊物:SCIE、EI、Scopus

卷号:72

期号:3

页面范围:379-404

ISSN号:1432-2994

关键字:Inverse optimization; Quadratic programming; Perturbation approach; Inexact Newton method

摘要:We consider an inverse quadratic programming (QP) problem in which the parameters in both the objective function and the constraint set of a given QP problem need to be adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a linear complementarity constrained minimization problem with a positive semidefinite cone constraint. With the help of duality theory, we reformulate this problem as a linear complementarity constrained semismoothly differentiable (SC(1)) optimization problem with fewer variables than the original one. We propose a perturbation approach to solve the reformulated problem and demonstrate its global convergence. An inexact Newton method is constructed to solve the perturbed problem and its global convergence and local quadratic convergence rate are shown. As the objective function of the problem is a SC(1) function involving the projection operator onto the cone of positively semi-definite symmetric matrices, the analysis requires an implicit function theorem for semismooth functions as well as properties of the projection operator in the symmetric-matrix space. Since an approximate proximal point is required in the inexact Newton method, we also give a Newton method to obtain it. Finally we report our numerical results showing that the proposed approach is quite effective.