许士国

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源

办公地点:实验三号楼431办公室

联系方式:sgxu@dlut.edu.cn

电子邮箱:sgxu@dlut.edu.cn

扫描关注

论文成果

当前位置: 许士国 >> 科学研究 >> 论文成果

Spatial Distribution, Adsorption/Release Characteristics, and Environment Influence of Phosphorus on Sediment in Reservoir

点击次数:

论文类型:期刊论文

发表时间:2017-09-01

发表刊物:WATER

收录刊物:SCIE

卷号:9

期号:9

ISSN号:2073-4441

关键字:sediment; phosphorus; reservoir; environment influence

摘要:Sediment gradually accumulates at the bottom of reservoirs after decades of running. To explore the influences of sediments on the water quality of reservoirs, the spatial distribution, adsorption/release characteristics, and environment influence of sediment pollutants should be analyzed. In this paper, the spatial distributions of phosphorus (P) and P fractions in the Biliuhe reservoir (river valley reservoirs) sediments were investigated. The adsorption and release characteristics of sediments P were studied in the experiment, while its environmental influence was analyzed too. The results indicate that the concentration of P in sediments was higher at the dam and the Zhongling site, while lower at other entrances of the reservoir and the smallest in the water-level fluctuating zone. Total Phosphorus (TP) varied from 355.46 to 764.57 mg/kg. Inorganic Phosphorus (IP) was the main form of TP in sediments, making up a proportion of 56-75%, while the correlation coefficient of P bound to Al, Fe, and Mn oxides was 0.922. Hydroxide (Fe/Al-P) was the main form of IP, which accounted for 46-83% with a correlation coefficient of 0.888. The maximum adsorption capacity calculated by Langmuir model was between 714.29 and 3333.33 mg/kg. The adsorption efficiency obtained by the Freundlich model was within the range of 0.40-1.42, which indicated that P adsorption was more difficult in the water-level fluctuating zone. The critical adsorption and release concentration range was 0.1-0.2 mg/L for the majority of the sampling points. The amount of P released in 24 h (the initial concentration of TP in the overlying water was 0 mg/L) accounted for 1.15-4.16% of TP in sediments, which was higher than the average concentration in the reservoir. It is concluded that the sediment is the potential pollution source. The relationship between the change of environmental factors and the release of sediment contaminants should be considered in the future.