许士国

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源

办公地点:实验三号楼431办公室

联系方式:sgxu@dlut.edu.cn

电子邮箱:sgxu@dlut.edu.cn

扫描关注

论文成果

当前位置: 许士国 >> 科学研究 >> 论文成果

Change detection of land use and land cover in an urban region with SPOT-5 images and partial Lanczos extreme learning machine

点击次数:

论文类型:期刊论文

发表时间:2010-11-01

发表刊物:JOURNAL OF APPLIED REMOTE SENSING

收录刊物:SCIE、EI、Scopus

卷号:4

期号:1

ISSN号:1931-3195

关键字:land use and land cover; computational intelligence; image processing; SPOT-5; PL-ELM

摘要:Satellite remote sensing technology and the science associated with evaluation of land use and land cover (LULC) in an urban region makes use of the wide range images and algorithms. Improved land management capacity is critically dependent on real-time or near real-time monitoring of land-use/land cover change (LUCC) to the extent to which solutions to a whole host of urban/rural interface development issues may be well managed promptly. Yet previous processing with LULC methods is often time-consuming, laborious, and tedious making the outputs unavailable within the required time window. This paper presents a new image classification approach based on a novel neural computing technique that is applied to identify the LULC patterns in a fast growing urban region with the aid of 2.5-meter resolution SPOT-5 image products. The classifier was constructed based on the partial Lanczos extreme learning machine (PL-ELM), which is a novel machine learning algorithm with fast learning speed and outstanding generalization performance. Since some different classes of LULC may be linked with similar spectral characteristics, texture features and vegetation indexes were extracted and included during the classification process to enhance the discernability. A validation procedure based on ground truth data and comparisons with some classic classifiers prove the credibility of the proposed PL-ELM classification approach in terms of the classification accuracy as well as the processing speed. A case study in Dalian Development Area (DDA) with the aid of the SPOT-5 satellite images collected in the year of 2003 and 2007 and PL-ELM fully supports the monitoring needs and aids in the rapid change detection with respect to both urban expansion and coastal land reclamations.