高级工程师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 计算机科学与技术学院
学科: 计算机应用技术
办公地点: 创新园大厦D0103房间
联系方式: QQ:2407849530
电子邮箱: xukan@dlut.edu.cn
qq : 2407849530
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2016-11-30
收录刊物: EI、CPCI-S
卷号: 9994
页面范围: 125-137
关键字: Information Retrieval; Query expansion; Learning to rank; Patent retrieval
摘要: Query expansion methods have been proven to be effective to improve the average performance of patent retrieval, and most of query expansion methods use single source of information for query expansion term selection. In this paper, we propose a method which exploits external resources for improving patent retrieval. Google search engine and Derwent World Patents Index were used as external resources to enhance the performance of query expansion methods. LambdaRank was employed to improve patent retrieval performance by combining different query expansion methods with different text fields weighting strategies of different resources. Experiments on TREC data sets showed that our combination of multiple information sources for query formulation was more effective than using any single source to improve patent retrieval performance.