大连理工大学  登录  English 
许侃
点赞:

高级工程师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 计算机科学与技术学院

学科: 计算机应用技术

办公地点: 创新园大厦D0103房间

联系方式: QQ:2407849530

电子邮箱: xukan@dlut.edu.cn

qq : 2407849530

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 许侃 >> 科学研究 >> 论文成果
Improving Pseudo-Relevance Feedback With Netural Network-Based Word Representations

点击次数:

论文类型: 期刊论文

发表时间: 2018-01-01

发表刊物: IEEE ACCESS

收录刊物: SCIE

卷号: 6

期号: 6

页面范围: 62152-62165

ISSN号: 2169-3536

关键字: Information retrieval; learning-to-rank; pseudo-relevance feedback; word representations

摘要: In information retrieval, query expansion methods, such as pseudo-relevance feedback, are designed to enrich users' queries with relevant terms for comprehensively interpreting the desired information. One of the key issues for query expansion is how to obtain high-quality expansion terms to capture the information needs. Recent advances in neural network language models have demonstrated that these models can learn powerful distributed word representations, which have been successfully applied to solve various natural language processing tasks. In this paper, we propose a novel query expansion framework based on neural network-based word representations. Our framework first selects abundant candidate expansion terms using a modified term-dependency method and then generates term features for candidate terms based on word representations to encode relationships between given queries and corresponding candidate terms. Furthermore, we adopt learning-to-rank methods to train term-ranking models with the generated features for term refinement. We conduct extensive experiments to examine the performance of the learned term-ranking models and compare the effectiveness of the representation-based and context-based features for selecting relevant expansion terms. Experimental results using four TREC collections show that neural network-based word representations are effective in query expansion and can significantly improve retrieval performance.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学