大连理工大学  登录  English 
许侃
点赞:

高级工程师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 计算机科学与技术学院

学科: 计算机应用技术

办公地点: 创新园大厦D0103房间

联系方式: QQ:2407849530

电子邮箱: xukan@dlut.edu.cn

qq : 2407849530

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 许侃 >> 科学研究 >> 论文成果
Group-enhanced ranking

点击次数:

论文类型: 期刊论文

发表时间: 2015-02-20

发表刊物: NEUROCOMPUTING

收录刊物: SCIE、EI

卷号: 150

期号: ,SI

页面范围: 99-105

ISSN号: 0925-2312

关键字: Information retrieval; Learning to rank; Groups; Loss functions

摘要: An essential issue in document retrieval is ranking, which is used to rank documents by their relevancies to a given query. This paper presents a novel machine learning framework for ranking based on document groups. Multiple level labels represent the relevance of documents. The values of labels are used to quantify the relevance of the documents. According to a given query in the training set, the documents are divided into several groups based upon their relevance labels. The group with higher relevance labels is always ranked upon the ones with lower relevance labels. Further a preference strategy is introduced in the loss functions, which are sensitive to the group with higher relevance labels to enhance the group ranking method. Experimental results illustrate that the proposed approach is very effective, with a 14 percent improvement on TD2003 dataset evaluated by MAP. (C) 2014 Elsevier B.V. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学