高级工程师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 计算机科学与技术学院
学科: 计算机应用技术
办公地点: 创新园大厦D0103房间
联系方式: QQ:2407849530
电子邮箱: xukan@dlut.edu.cn
qq : 2407849530
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2014-09-24
发表刊物: 情报学报
收录刊物: PKU、ISTIC、CSSCI
卷号: 33
期号: 9
页面范围: 944-951
ISSN号: 1000-0135
关键字: HDP;主题聚类;主题演化;汽车专利
摘要: 近年来专利数据呈爆炸式增长,从专利文本信息中准确地获取主题信息并将其可视化逐渐成为一个重要的研究方向。专利主题演化研究能够挖掘出专利中潜在的发展模式,对相关研究具有重要参考价值。本文将分层的狄利克雷过程(HDP)应用到专利主题聚类中,通过当前主题与加入历史数据之后的主题变化来挖掘主题的分流与合流,最后对主题信息利用叠式图进行可视化展示。实验结合实际的汽车专利数据进行分析研究,发现汽车专利主要分为三个大主题,而且各个主题之间有分流、合流,有逐年递增也有逐年递减,有新生主题也有消亡主题等各种形式,并发现从2006年开始汽车安全领域和汽车新能源领域分别独立成为一个主题并呈逐年增长的趋势。