郭新闻

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:盘锦校区管委会副主任兼教学与科研工作部部长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:工业催化. 物理化学

办公地点:化工实验楼B427

联系方式:18641143913

电子邮箱:guoxw@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

In situ synthesis of titanium doped hybrid metal-organic framework UiO-66 with enhanced adsorption capacity for organic dyes

点击次数:

论文类型:期刊论文

发表时间:2017-11-01

发表刊物:INORGANIC CHEMISTRY FRONTIERS

收录刊物:SCIE

卷号:4

期号:11

页面范围:1870-1880

ISSN号:2052-1553

摘要:Titanium in different amounts has been successfully doped into the zirconium-based metal-organic framework UiO-66 via an in situ synthesis method, resulting in a series of hybrid UiO-66-nTi MOFs. These materials maintain a relatively high crystallinity and excellent structural stability. The addition of titanium has a significant effect on the crystal size and morphology of UiO-66. The UiO-66-nTi MOFs exhibit a sphere-like crystal morphology with a smaller crystal size and a rougher surface compared to the octahedral UiO-66 crystals. The framework order and porosity of the UiO-66-nTi MOFs decrease slightly due to titanium doping. The UiO-66-nTi MOFs were studied as adsorbents for the removal of an organic dye from water. The results demonstrate that these hybrid materials have enhanced adsorption capacity for the organic dye Conge red in comparison with the parent UiO-66. UiO-66-2.7Ti with 2.7% titanium doping shows the highest adsorption capacity of 979 mg g(-1), which is three times higher than that of the parent UiO-66. The strong electrostatic attraction between the positively charged surface of UiO-66-2.7Ti and the negatively charged Congo red molecules was identified as the main driving force for the high adsorption capacity.