郭新闻

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:盘锦校区管委会副主任兼教学与科研工作部部长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:工业催化. 物理化学

办公地点:化工实验楼B427

联系方式:18641143913

电子邮箱:guoxw@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

In Situ Aluminum Migration into Zeolite Framework during Methanol-To-Propylene Reaction: An Innovation To Design Superior Catalysts

点击次数:

论文类型:期刊论文

发表时间:2018-06-20

发表刊物:INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

收录刊物:SCIE

卷号:57

期号:24

页面范围:8190-8199

ISSN号:0888-5885

摘要:This work involves methanol-to-propylene (MTP) conversion over aluminosilicate MFI (ZSM-5), borosilicate MFI (B-ZSM-5), and all-silica MFI (Silicate-1). Both B-ZSM-5 and Silicate-1 were inactive in MTP reaction. However, extruded Silicate-1 sample prepared by extrusion with Al2O3 binder, followed by acid washing treatment, displayed a rapid increase in methanol conversion in the initial 30 h time on stream (TOS), and then retained 99% methanol conversion, higher propylene selectivity (52.2%), and higher propylene/ethylene ratio (11.3) for 400 h TOS. Silicate-1 modified with AlCl3 or Al(NO3)(3) showed similar catalytic performance as the extruded samples. Several AlCl3 -modified Silicate-1 samples after various TOS values were regenerated and characterized by NH3 -termperature-programmed desorption (TPD), Fourier transform infrared (FT-IR) spectroscopy, and Al-22 magic angle spinning nuclear magnetic responance (MAS NMR). The results point to continuous aluminum insertion into Silicate-1 framework during reaction in situ, which rationalizes the superior catalytic performance. By analyzing catalytic performances of AlCl3-modified samples with different amounts of defect sites, we concluded that Al migration is related to the defect sites. Finally, a catalyst with a much longer lifetime of 960 h and 53.2% propylene selectivity was developed by incorporating Al migration into hierarchical samples.