个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:盘锦校区管委会副主任兼教学与科研工作部部长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:工业催化. 物理化学
办公地点:化工实验楼B427
联系方式:18641143913
电子邮箱:guoxw@dlut.edu.cn
Synthesis of magnetic porous Fe3O4/C/Cu2O composite as an excellent photo-Fenton catalyst under neutral condition
点击次数:
论文类型:期刊论文
发表时间:2016-08-01
发表刊物:JOURNAL OF COLLOID AND INTERFACE SCIENCE
收录刊物:SCIE、EI、PubMed、Scopus
卷号:475
页面范围:119-125
ISSN号:0021-9797
关键字:Fe3O4; Cu2O; Photo-Fenton; Catalytic activity; Porous structure
摘要:Magnetic porous Fe3O4/C/Cu2O composites were prepared by a simple two-step process. Porous Fe3O4/C was synthesized via calcining iron tartrate precursor and then Cu2O was composited with Fe3O4/C by a precipitation-reduction method. The as-prepared samples were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) elemental mapping. Results show that Fe3O4/C has porous nanorod structure, which is composed of numerous small nanoparticles of about 50 nm. Fe3O4 and carbon are uniformly distributed in the Fe3O4/C/Cu2O composite and Cu2O is dispersed on the surface of Fe3O4/C. Fe3O4/C/Cu2O composite exhibits excellent photo-Fenton catalytic performance for the degradation of methylene blue (MB) under visible light irradiation and neutral pH conditions, and MB (100 mg/L) could be almost completely removed within 60 min. The composite shows good recyclability and could be conveniently separated by an applied magnetic field. These results demonstrate that the Fe3O4/C/Cu2O composite is a powerful Fenton-like catalyst for degradation of organic pollutants from wastewater. (C) 2016 Elsevier Inc. All rights reserved.