个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:盘锦校区管委会副主任兼教学与科研工作部部长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:工业催化. 物理化学
办公地点:化工实验楼B427
联系方式:18641143913
电子邮箱:guoxw@dlut.edu.cn
Facile synthesis of magnetic Fe3O4/CeCO3OH composites with excellent adsorption capability for small cationic dyes
点击次数:
论文类型:期刊论文
发表时间:2015-01-01
发表刊物:RSC ADVANCES
收录刊物:SCIE、EI、Scopus
卷号:5
期号:114
页面范围:94397-94404
ISSN号:2046-2069
摘要:Magnetic Fe3O4/CeCO3OH composites were prepared through a one-step hydrothermal route and their applications as adsorbents for removal of dyes were investigated. The as-prepared Fe3O4/CeCO3OH composites as well as single component Fe3O4 and CeCO3OH were characterized by XRD, TEM, FTIR, TG, XPS, EDX, Ar physisorption, and zeta potential analysis. Results showed that the composite of Fe3O4 with CeCO3OH significantly improved the adsorption ability compared to both Fe3O4 and CeCO3OH, and Fe/Ce dosage ratio was the key to control the adsorption properties of the adsorbents. The adsorption amount of the adsorbent was closely related to the amount of surface carboxylate groups, which exhibited surface negative charge and thus superior ability to adsorb cationic dyes. The weight percentages of surface carboxylate groups for the adsorbents with Fe/Ce dosage ratios of 5 : 0, 4 : 1, 1 : 1, 1 : 4 and 0 : 5 were 7.6%, 18.3%, 15.1%, 12.0% and 5.9%, respectively. The maximum adsorption capacity reached 666.2 mg g(-1) for methylene blue (MB) at the Fe/Ce dosage ratio of 4 : 1, much higher than other magnetic adsorbents. The kinetic adsorption data fitted the pseudo-second-order model and the isotherm data followed the Langmuir model. Besides, the magnetic property of the Fe-Ce composite made solid-liquid separation easily achievable. These results demonstrated that this composite material could be used as a good adsorbent for selective removal of small cationic dyes from wastewater, and this facile synthesis method can be used to prepare other high performance adsorbents.