徐晓晨

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:日本熊本大学

学位:博士

所在单位:环境学院

学科:环境工程

联系方式:0411-84706328

电子邮箱:xxcep@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Highly effective antifouling performance of N-vinyl-2-pyrrolidone modified polypropylene non-woven fabric membranes by ATRP method

点击次数:

论文类型:期刊论文

发表时间:2011-03-01

发表刊物:JOURNAL OF MEMBRANE SCIENCE

收录刊物:SCIE、EI

卷号:369

期号:1-2

页面范围:233-242

ISSN号:0376-7388

关键字:Non-woven membrane; Atom-transfer radical polymerization (ATRP); N-vinyl-2-pyrrolidone; Hydrophilicity; Antifouling property; Anti-bacterial adhesion

摘要:In this paper, a hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (PNVP), was grafted on the surface of polypropylene non-woven fabric (PP-NWF) membrane via ozone surface activation and surface-initiated atom transfer radical polymerization (ATRP). The grafting degree of PNVP on the membrane surface can be modulated in a wide range through the variation of grafting time. Chemical and morphological changes of the PNVP-modified membrane surface were characterized in detail by Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy and scanning electron microscopy (SEM). The hydrophilicity of the membrane increased upon modification with the water contact angle decreasing from 113.0 +/- 1.2 degrees to 52.1 +/- 3 degrees. Permeation experiments of water and supernatant solution of active sludge were conducted to evaluate the antifouling property of the PNVP-modified membranes, which results indicated that the modified membranes had higher permeation fluxes with enhanced rejection rates, lower flux loss and better antifouling property than those of the original NWF membrane. Bacterial adhesion on the studied membrane surfaces was also investigated, which showed that bacteria were restrained from growing on PNVP-modified membranes, and adhesion of bacteria was reversible due to the enhanced hydrophilicity. (C) 2010 Elsevier B.V. All rights reserved.