徐秀娟

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:女

毕业院校:吉林大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程

办公地点:开发区综合楼

电子邮箱:xjxu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A feature-based regression algorithm for cold-start recommendation

点击次数:

论文类型:期刊论文

发表时间:2014-01-01

发表刊物:Journal of Industrial and Production Engineering

收录刊物:EI、Scopus

卷号:31

期号:1

页面范围:17-26

ISSN号:21681015

摘要:Recommender systems are widely used to help user select relevant online information. A key challenge of recommender systems is to provide high-quality recommendations for cold-start users or cold-start items. We propose a feature-based regression algorithm with baseline estimates to cope with three types of cold-start problems: cold-start system, cold-start users, and cold-start items. We consider all available information of users and items to solve the cold-start problems and take into account the user and item effects that exist in collaborative filtering systems. Compared to some existing algorithms, our algorithm is effective on the 100 k MovieLens data-set for cold-start recommendation. © 2014 Chinese Institute of Industrial Engineers.