杨光飞

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:早稻田大学

学位:博士

所在单位:系统工程研究所

学科:管理科学与工程

联系方式:邮件:gfyang@dlut.edu.cn 电话:0411-84707917

电子邮箱:gfyang@dlut.edu.cn

扫描关注

论文成果

当前位置: 杨光飞 >> 科学研究 >> 论文成果

Integrating rich and heterogeneous information to design a ranking system for multiple products

点击次数:

论文类型:期刊论文

发表时间:2016-04-01

发表刊物:DECISION SUPPORT SYSTEMS

收录刊物:SCIE、EI、SSCI、Scopus

卷号:84

页面范围:117-133

ISSN号:0167-9236

关键字:Text sentiments; Numeric rating; Comparative relationships; Product rankings

摘要:The online review plays an important role as electronic word-of-mouth (eWOM) for potential consumers to make informed purchase decisions. However, the large number of reviews poses a considerable challenge because it is impossible for customers to read all of them for reference. Moreover, there are different types of online reviews with distinct features, such as numeric ratings, text descriptions, and comparative words, for example; such heterogeneous information leads to more complexity for customers. In this paper, we propose a method to integrate such rich and heterogeneous information. The integrated information can be classified into two categories: descriptive information and comparative information. The descriptive information consists of online opinions directly given by consumers using text sentiments and numeric ratings to describe one specific product. The comparative information comes from comparative sentences that are implicitly embedded in the reviews and online comparative votes that are explicitly provided by third-party websites to compare more than one product. Both descriptive information and comparative information are integrated into a digraph structure, from which an overall eWOM score for each product and a ranking of all products can be derived. We collect both descriptive and comparative information for three different categories of products (mobile phones, laptops, and digital cameras) during a period of 10 days. The results demonstrate that our method can provide improved performance compared with those of existing product ranking methods. A ranking system based on our method is also provided that can help consumers to compare multiple products and make appropriate purchase decisions effortlessly. (C) 2016 Elsevier B.V. All rights reserved.