杨光飞

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:早稻田大学

学位:博士

所在单位:系统工程研究所

学科:管理科学与工程

联系方式:邮件:gfyang@dlut.edu.cn 电话:0411-84707917

电子邮箱:gfyang@dlut.edu.cn

扫描关注

论文成果

当前位置: 杨光飞 >> 科学研究 >> 论文成果

An evolutionary approach to rank class association rules with feedback mechanism

点击次数:

论文类型:期刊论文

发表时间:2011-11-01

发表刊物:EXPERT SYSTEMS WITH APPLICATIONS

收录刊物:Scopus、SCIE、EI

卷号:38

期号:12

页面范围:15040-15048

ISSN号:0957-4174

关键字:Class association rule; Genetic Network Programming; Feedback mechanism

摘要:In this paper, we propose an evolutionary associative classification method by considering both adjustment of the order of the whole set of rules and refinement of the power of each single rule. We discover an interesting phenomenon that the classification performance could be improved if we import some prior-knowledge to re-rank the association rules, where the prior-knowledge could be some equations generated by combing the support and confidence values with various functions. We make use of Genetic Network Programming to automatically search the equation space for prior-knowledge. In addition to rank the rules by equations globally, we also develop a feedback mechanism to adjust the rules locally, by giving some rewards to good rules and penalties to bad ones. Because the proposed method is based on evolutionary computation, we could gradually refine the power of each rule so that it could affect the classification results more precisely. The experimental results on UCI benchmark datasets show that the proposed method could improve the classification accuracies effectively. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.