Xiaoming Yan   

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Title : 辽宁省石化行业高效节能分离技术工程实验室副主任

MORE> Recommended Ph.D.Supervisor Recommended MA Supervisor Institutional Repository Personal Page
Language:English

Paper Publications

Title of Paper:A novel strategy for constructing a highly conductive and swelling-resistant semi-flexible aromatic polymer based anion exchange membranes

Hits:

Date of Publication:2017-04-13

Journal:INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Included Journals:SCIE、EI

Volume:42

Issue:15

Page Number:10228-10237

ISSN No.:0360-3199

Key Words:Semi-flexible polymer; Poly (aryl ether sulfone); Anion exchange membrane; Fuel cell

Abstract:A novel strategy was proposed to construct a bicontinuous hydrophilic/hydrophobic micro phase separation structure which is crucial for high hydroxide conductivity and good dimensional stability anion exchange membranes (AEMs). A semi-flexible poly (aryl ether sulfone) containing a flexible aliphatic chain in the polymer backbone with imidazolium cationic group was synthesized by the polycondensation of bis(4-fluorophenyl) sulfone and the self-synthesized 4,4'-[butane-1,4-diylbis(oxy)] diphenol followed by a two-step functionalization. The corresponding membranes were prepared by solution casting. More continuous hydroxide conducting channels were formed in the semi-flexible polymer membranes compared with the rigid based ones as demonstrated by TEM. As a result, given the same swelling ratio, hydroxide conductivity of the semi-flexible polymer membrane was about 2-fold higher than the one of the rigid polymer based membrane (e.g., 45 vs. 22 mS cm(-1) with the same swelling ratio of 24% at 20 degrees C). The highest achieved conductivity for the semi-flexible polymer membranes at 60 degrees C was 93 mS cm(-1), which was much higher those of other random poly (aryl ether sulfone) based imidazolium AEMs (27 -81 mS cm(-1)). The single cell employing the semi-flexible polymer membrane exhibited a maximum power density of 125 mW cm(-2) which was also higher than those for other random poly (aryl ether sulfone) based imidazolium AEMs (16-105.2 mW cm(-2)). (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024
Click:    MOBILE Version DALIAN UNIVERSITY OF TECHNOLOGY Login

Open time:..

The Last Update Time: ..