Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Title : 辽宁省石化行业高效节能分离技术工程实验室副主任
Title of Paper:Poly(2,6-dimethyl-1,4-phenylene oxide) containing imidazolium-terminated long side chains as hydroxide exchange membranes with improved conductivity
Hits:
Date of Publication:2016-11-15
Journal:JOURNAL OF MEMBRANE SCIENCE
Included Journals:SCIE、EI、Scopus
Volume:518
Page Number:159-167
ISSN No.:0376-7388
Key Words:Anion exchange membrane; Fuel cell; PPO; Imidazolium
Abstract:Hydroxide exchange membrane fuel cells (HEMFCs) receive growing interest due to the usability of non precious metal catalysts in the basic operating environment. The applications of HEMFCs are hindered by the trade-off between high hydroxide conductivity and good dimensional stability of the HEMs. Here, a novel poly(2,6-dimethyl-1,4-phenylene oxide) with imidazolium-terminated long side chains (PPO-COC5H10-lm) was synthesized by simple and controllable acetylation reaction of PPO and 6-bromohexanoyl chloride in a moderate condition (at room temperature), followed by the Menshutkin reaction with 1,2-dimethylimidazole. The introduction of long chains between imidazolium groups and polymer main chains facilitates the formation of good hydrophilic/hydrophobic micro-phase separation structure, which is illustrated by TEM. The hydroxide effective mobility in PPO-COC5H10-lm membrane is almost 2-fold that in short side chain imidazolium functionalized PPO (PPO-CH2-Im) membrane at a certain IEC. Given similar swelling ratios (25% vs. 27%), PPO-COC5H10-lm membrane shows much higher hydroxide conductivity than PPO-CH2-Im membrane (62 vs. 42 mS cm(-1)) at 60 degrees C. It indicates that the PPO-COC5H10-lm membranes prepared here exhibits highly enhanced conductivity without sacrificing the dimensional stability. (C) 2016 Elsevier B.V. All rights reserved.
Open time:..
The Last Update Time: ..