个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
办公地点:新三束实验室215
联系方式:86-411-84707347
电子邮箱:yaoman@dlut.edu.cn
New Insights into the Anchoring Mechanism of Polysulfides inside Nanoporous Covalent Organic Frameworks for Lithium-Sulfur Batteries
点击次数:
论文类型:期刊论文
发表时间:2018-12-19
发表刊物:ACS APPLIED MATERIALS & INTERFACES
收录刊物:SCIE、Scopus
卷号:10
期号:50
页面范围:43896-43903
ISSN号:1944-8244
关键字:lithium-sulfur batteries; shuttle effect; nanoporous materials; covalent organic frameworks; Li2Sx species; first-principles simulation
摘要:The application prospects of lithium-sulfur (Li-S) batteries are constrained by many challenges, especially the shuttle effect of lithium polysulfides (Li2Sx). Recently, microporous covalent organic framework (COF) materials have been used to anchor electrodes in Li-S batteries, because of their preferable characteristics, such as self-design ability, suitable pore size, and various active groups. To identify the ideal anchoring materials that can effectively restrain the shuttle of Li2Sx species, the anchoring mechanism between COF materials and Li2Sx species should be investigated in depth. Therefore, we systematically investigated the anchoring mechanism between specific COF nanomaterials (consisting of boron and oxygen atoms and benzene group) and Li2Sx (x = 1, 2, 4, 6, or 8) species on the surface and inside the pore using density functional theory methods with van der Waals interactions. The detailed analysis of the adsorption energy, difference charge density, charge transfer, and atomic density of states can be used to determine that the COF nanomaterials, with the structure of boroxine connecting to benzene groups and boroxine groups not constructed at the corner of the structure, can effectively anchor the Li2Sx series. Accordingly, this study provides the theoretical basis for the molecular-scale design of ideal anchoring materials, which can be useful to improve the performance of the Li-S batteries.