姜宜辰

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 水动力研究所 副所长

性别:男

毕业院校:加州大学伯克利分校

学位:博士

所在单位:船舶工程学院

学科:船舶与海洋结构物设计制造

办公地点:船舶工程学院303室

电子邮箱:ycjiang@dlut.edu.cn

扫描关注

论文成果

当前位置: 姜宜辰 >> 科学研究 >> 论文成果

Numerical simulation of micro-bubble drag reduction of an axisymmetric body using OpenFOAM

点击次数:

论文类型:期刊论文

发表时间:2019-10-01

发表刊物:JOURNAL OF HYDRODYNAMICS

收录刊物:SCIE

卷号:31

期号:5

页面范围:900-910

ISSN号:1001-6058

关键字:Eulerian-Eulerian two-fluid model; axisymmetric body; micro bubbles; drag reduction; numerical simulation

摘要:The two-phase micro-bubble flow over an axisymmetric body is investigated using the OpenFOAM framework. The numerical model consists of an Eulerian-Eulerian two-fluid model with closure relationships for the interfacial momentum transfer to capture the multiphase flow, a standard k - epsilon model for the continuous phase and one turbulence model inside the OpenFOAM for the dispersed phase. The bubble sizes are calculated based on the solution of the transport equation of the interfacial area density. The simulations in this work are carried out with different air injection rates and different flow velocities. The effects of bubble size on drag reduction are analyzed. The numerical results are compared against some available experiments and other numerical simulations. The numerical results indicate that the airflow rate and air volume fraction within the boundary layer near the body play important roles in micro-bubble drag reduction. The frictional drag reduction effect by micro bubbles is larger for lower water speed, and the presence of the micro bubbles can increase the pressure resistance of the body. Drag reduction rates are generally higher when the bubble diameter is smaller.