刘勇

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中科院大连化学物理研究所

学位:博士

所在单位:化工海洋与生命学院

学科:药理学. 生物医学工程. 生物化学与分子生物学

办公地点:盘锦校区F03-312B

联系方式:大连理工大学生命科学与药学学院 辽宁省盘锦市辽东湾新区大工路2号 邮编:124221 电话: 0427-2631433

电子邮箱:yliu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页-刘勇 >> 科学研究 >> 论文成果

Accurate and sensitive detection of Catechol-O-methyltransferase activity by liquid chromatography with fluorescence detection

点击次数:

论文类型:期刊论文

发表时间:2021-01-10

发表刊物:JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES

卷号:1157

ISSN号:1570-0232

关键字:Liquid chromatography; Fluorescence detection; Catechol-O-methyltransferase; 3-BTD methylation

摘要:Catechol-O-methyltransferase (COMT) is a major drug metabolizing enzyme in humans. COMT expression is directedly associated with various mental diseases and cancers due to its essential role in catalyzing metabolic inactivation of endogenous catecholamines and catechol estrogens. However, a practical method to precisely measure COMT activities in biological samples is lacking. In the current study, we established a liquid chromatography-fluorescence detection (LC-FD) method based on fluorometric detection of the methylated product of 3-BTD, a fluorescent probe for COMT, to sensitively quantify COMT activities in human erythrocytes and cell homogenates. Assay validation of the established LC-FD based method was conducted for selectivity and sensitivity, range of linearity, precision and accuracy, recovery, biological matrices effect and stability. The limit of quantification for 3-BTMD (the methylated product of 3-BTD by COMT) of this method was 0.0083 nM, which is nearly 10-fold lower than that for previously published methods. The method was precise with infra- and interday relative standard deviation (RSD) lower than 5%. In addition, this method showed an excellent anti-interference ability with no effects of the endogenous substances on the fluorometric detection of 3-BTMD. The practical use of this method was established by its successful application for the measurement of COMT activities in individual human erythrocytes (n = 13), and in cell homogenates generated from four different human cell lines. Our results suggest that this method will be of great value in accurately determining the native activity of COMT in biological samples, which is beneficial for a complete understand of the role of COMT both in physiological and pathological conditions.